If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9y^2+12y-10=0
a = 9; b = 12; c = -10;
Δ = b2-4ac
Δ = 122-4·9·(-10)
Δ = 504
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{504}=\sqrt{36*14}=\sqrt{36}*\sqrt{14}=6\sqrt{14}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-6\sqrt{14}}{2*9}=\frac{-12-6\sqrt{14}}{18} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+6\sqrt{14}}{2*9}=\frac{-12+6\sqrt{14}}{18} $
| (5.3/2+1.5)^x=3.7 | | 4x-12.2x=-32 | | 142(x-2)=20 | | 6x-20=2x^2-12x+16 | | 6k-4=32 | | x/8.5=10 | | |6x|-5=13 | | 4x(7x+8)=5x(9x-20) | | 15x-11x-3x=2 | | 1217=4x-7 | | -4x+7=-3x+10 | | -79=7x+3(4x+1) | | 9y^2+24y-19=0 | | 1112+n=17 | | 5x+60+2x+51=43-2x+30-10x | | 2x+3*20=55 | | 3x-8x+64=24 | | −3.5=m1.4 | | 108x-5=35 | | 97x-7=56 | | 4(5x+15)=80+16x | | -3/6n=40 | | F(10)=x+5/x-7 | | -11c+-80=92.2 | | (-3/6n)=40 | | x(x)+13=-12 | | 84x+6=14 | | 3(3x+9)=4(5x+7) | | 73x-8=19 | | 3/4(2m-5=2(3m-4)-5/6m | | 65x-5=81 | | 4x+2=80 |